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Abstract~An integral equation method is presented which permits evaluation of stress and displacement fields
in two-dimensional elastic solids near corners and notches. The procedure begins by using well known expressions
of an asymptotic character for the fields near the points in question. Unknown coefficients, one of which will be a
stress intensity factor in the case of a cracked plate, are treated as generalized displacements. Suitable test solutions
are developed to express the generalized displacements in terms of integrals involving far-field quantities. Sample
numerical solutions are presented for notched and cracked plates.

INTRODUCTION

IN THIS paper an effective numerical method for determining stress near corners and
notches in finite two-dimensional bodies is presented. It is assumed that the material is
linearly elastic and that the displacements are small.

As is well known, the formulation of the problem in accordance with the small dis
placement theory may give rise to stress singularities. Obviously, this is an idealization of
the physical problem in which yielding or other nonlinear behavior precludes the possibility
of infinite stresses. Nevertheless, the determination of singular elastic stress states is an
important consideration in problems where small scale yielding is encountered [I}

A variety of exact singular solutions for infinite regions are readily available [2,3].
However, the problem of obtaining an exact solution in a bounded region with prescribed
boundary values is generally intractable. One is therefore usually compelled to seek ap
proximate schemes which are capable of providing satisfactory results with a reasonable
expenditure of computational effort.

The most commonly used numerical methods for solving boundary value problems
with stress singularities have been based on boundary collocation and finite element
techniques. Recently, however, the work of Rizzo et ai. [4,5] has revived interest in the
singular integral equations of classical elastostatics, via the direct (real variable) potential
approach. Cruse and Vanburen [6] have applied the direct potential method to a thick
plate with an edge crack in order to determine the nonanalytic stress distribution. A some
what different path was followed by Bueckner [7] and Tirosh [8] who established singular
integral equations, in complex form, for two-dimensional crack problems.

Although both these expressions include the character of the singularity, they appear
to lack the generality and conceptual simplicity of the integral equations generated directly
in terms of the real variable potentials cited earlier.
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The proposed formulation is an extension of the direct potential method in that the
character ofthe stress singularity enters the resulting singular integral equations explicitly.
In the formulation the asymptotic character of the nonanalytic stress state is expressed by an
eigenfunction expansion where each of the eigenfunctions is known to within a multi
plicative constant. These constants serve as generalized displacements. The kernels for the
integral equations corresponding to points along smooth portions of the boundary are
obtained from solutions to concentrated force problems in the usual manner. However,
new kernels are derived in the formulation of the integral equations at the points associated
with stress singularities. The two types of integral equations form a coupled system in
volving the generalized displacements and boundary values as unknowns.

The main advantage of the proposed method is that it leads to a well conditioned
system of linear algebraic equations for bodies of almost any shape. In addition, it turns
out that the generalized displacements at a singular point depend almost entirely on the
boundary values at fairly remote points. This appears to have a stabilizing effect on the
solution.

As will be seen later, the integral equations developed in the present study which
determine the character of the stress singularities involve only the far-field displacements.
In contrast, Bueckner's integral equation extends over an area near the singularity [7].
Tirosh [8] arrives at an integral equation for an antiplane case in which a stress intensity
factor is determined directly in terms of far-field quantities.

INTEGRAL EQUATIONS AT REGULAR AND IRREGULAR BOUNDARY

POINTS

The integral equations are formulated for an elastic two-dimensional region enclosed
by a curve, the boundary. A point on the boundary is regular if the tangent at the point is
continuously turning. A point at which the tangent is not uniquely defined is termed
irregular. The tip of a crack or the vertex of a wedge are particular examples of irregular
boundary points.

The integral equation formulation for regions with irregular boundary points is based on
Betti's reciprocal theorem. t The success of this approach, as in classical potential theory,
depends entirely on the judicious choice of the "test" solutions, commonly referred to as
auxiliary solutions. A suitable choice of the auxiliary solutions makes it possible to express
the unknown displacements at a boundary point P in terms of work integrals that contain
the boundary displacements and tractions associated with the actual solution sought.
The resulting integral equations will depend in form on whether the boundary point is
regular or irregular. A detailed development of the integral equations at irregular points
will be presented in the following sections. First, however, it is helpful to summarize the
development of the well known integral equation technique for regular points [4] in order
to motivate the subsequent extension to an irregular point.

Integral equations at regular boundary points

Consider a two-dimensional region D+L, where D signifies the open region and L
the bounding contour. The actual field parameters are denoted by

ti Q); tractions

t This method was first applied to elasticity problems by the Italian school of elasticians (see Love [9]) in
the last century.
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uip); displacements

(Jiip); stresses

where p is a point in D+Land Q is a boundary point. The indices (i = 1,2) and (j = 1,2)
refer to the (x, y) coordinate directions.

In the case of the two-dimensional problem, the auxiliary system is derived from the
well-known Kelvin solutions associated with the concentrated forces F1 and F2 acting in
the x and y directions, respectively.

The tractions and displacements at some boundary point, Q, due to the ith concen
trated force at a point P are denoted by

t;j(Q); tractions

u;j(Q); displacements

where j (j = 1,2) refers to the x and y directions.
Since the auxiliary solution is unbounded at P, a small region which contains P is

removed from the body before the reciprocal theorem is applied. The excluded region, De>
is conveniently taken as a circle centered at P with a radius e.

If the actual displacements and tractions, which are regular at P, are expanded about P
in a Taylor series, it can be readily seen that the reciprocal relation for e --+ Ocan be expressed
as

(1)

(2)

where
(Xij = 0 if i i= j.

It follows from equation (1) that the Kelvin auxiliary forces «(X11 = F1 , (X22 = F2 ) acting
at P in effect "pick out" the actual displacements at P.

Integral equations at irregular boundary points

In order to develop the proposed method it is first necessary to establish the form of the
.displacements in the vicinity ofa notch. These displacements, expressed in polar coordinates,
take the form [10, 11] (Fig. 8)

Up = p)A(¢)

U", = p'-B(¢)

where Ais a constant. By virtue ofequations (2) the two-dimensional equilibrium equations
can be reduced tot

d
2
A(¢)+ A- 3+4v dB(¢) + 2(l-V)(A2 -1)A(¢) = 0

d¢2 1- 2v d¢ 1- 2v

2(1-v) d
2
B(¢) +A+3-4v dA(¢) +(A2 -1)B(¢) = O.

1-2v d¢2 1-2v d¢

(3)

General expressions for A(¢) and B(¢) can be obtained from equations (3) in the usual
manner. The stipulation that the solution satisfy certain prescribed homogeneous boundary

t These equations are required in the Appendix.
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conditions along the sides of the notch leads to a characteristic equation which is a function
of Aand the notch angle. It turns out that there are an infinite number of eigenvalues (Am;
m = 1,2, ...) which satisfy this equation and that each of the corresponding eigenfunctions
can be determined to within a multiplicative constant. The displacements near an irregular
boundary point can then be expressed as an eigenfunction expansion.

In general the eigenvalues (Am; m = 1,2, ... ) are complex. It is possible, without loss of
generality, to regard Am as real in the following development. Under the assumption that
the Am are real, the displacement and stress fields can be written as

(a) The actual displacement field.

Up = LDpm
m

(4)

m

(b) The actual stress field.

m

m

The mth term of each of these expansions is given by:
(a) The mth displacement field.

Dpm = KmAm(¢,)pAm

DrPm = KmBm(¢')pAm.

(b) The mth stress field.

(5)

(6)

(7)

(8)

~m = KmPm(¢,)pAm-l

TrPm = KmQm(¢')pAm- 1

TprPm = KmRm(¢')pAm- 1

where the unknown constants K m are generalized displacements. The functions Am(¢'), . .. ,
R m(¢') in the above equations are defined by the following relations

Am(¢') = Cjmaj(¢" Am)

Bm(¢') = Cjmbi¢', Am)

Pm(¢') = Cjmpi¢', Am)

Qm(¢') = Cjmqi¢', Am)

Rm(¢) = Cjmri¢', Am)

where j = 1,2,3,4. The ai¢', Am) through ri¢, Am) are trigonometric functions and the
constants Cjm are eigenvectors determined from the homogeneous boundary conditions (12).

The most important step in the treatment of boundary value problems where some of
the boundary points are irregular is to establish equations that relate the generalized
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displacements to the displacements and traction along the boundary. The possibility of
establishing these relations in a manner similar in principle to the approach taken in the
formulation of the integral equations at a regular point suggests itself if one recognizes the
analogy between the displacements (u 1 , uz) at a regular point and the generalized dis
placements at an irregular point. Since the Kelvin auxiliaries pick out the corresponding
displacements (u l' uz), it is reasonable to inquire whether certain auxiliary solutions can
be found which pick out the corresponding generalized displacements. It turns out that
such auxiliary solutions do exist.

A question which arises naturally at this point is: what must be the form ofthe auxiliary
solution which picks out the nth generalized displacement? It suffices, in answering this
question, to refer to the form of the actual displacements as given by equations (6) and to
observe that the reciprocal relation would involve work terms such as the auxiliary tractions
multiplied by the corresponding terms of the actual displacements along a small circular
arc of radius e which excludes the irregular point from the body (see Fig. 1) Clearly, the
auxiliary solution must be chosen so that the work terms remain bounded as e approaches
zero. If such a set of solutions exists, then we are led to the conclusion that they are of the
same form as the corresponding nth term of the actual solution and that the characteristic
exponent A: is the negative of the associated characteristic exponent An. That is,

(a) The nth auxiliary displacements.

(b) The nth auxiliary stresses.

D:n = K:A:(</J)pA*"

D* = K*B*(A.)pA*"4>n n n 'I' .

T:n = K:P:(</J)pA*,,-l

T:n = K:Q:(</J)pA,,-1

T* = K*R*(A.)pA"-lp4>n n n 'I'

(9)

(10)

where A: = -An and K: are suitably chosen constants. The functions A:(</J), ... , R:(</J)
are obtained by replacing An by - An in the corresponding functions associated with actual
solution [see equations (8)].

These auxiliary solutions possess a remarkable property; they satisfy the same boundary
conditions on the faces of the notch as the original solution.

The preceding heuristic arguments that led to the formulation of the auxiliary solutions
require verification. This can be accomplished most directly and without loss of generality
by considering the manner in which the reciprocal theorem relates the actual solution and
the nth auxiliary solution in the specific case of a cracked plate subjected to prescribed
tractions as shown in Fig. 1. Since the crack is traction-free, the tractions associated with
each component of the actual solution must vanish. This condition can be expressed in
terms of the characteristic equation which for the traction-free crack becomes

sinz2h = 0 (11)

where

(m = 1,2,3, ...).
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L c

Actua I System

p

The n-th Auxiliary System

FIG. 1. Actual and auxiliary systems for a cracked plate.

These eigenvalues are positive and therefore conform to the physical requirement that the
displacements remain bounded and continuous at the irregular point, i.e. the crack tip.
Obviously, the auxiliary displacements need not satisfy this requirement.

This reciprocal work terms are evaluated along the circular arc L. (Fig. 1) of radius t:
and along the remainder of the boundary. For the present it suffices to introduce only the
work terms along the circular arc L. and the crack boundary L e • Let:

W 12 = The work of the actual tractions through the nth auxiliary displacements along
L.+Le •

W 21 = The work of the nth auxiliary tractions through the actual displacements along
L.+Le •

The difference of these terms is expressed as

Wd = W12 - W21 = L Kmrmnt:;'~+.l:'+A(t:)
m

(12)

where K m are generalized displacements and A(t:) is the reciprocal work difference along
L e • The term rmn is the work difference along L. and is given by:

f
2"

r mn = -K: 0 [[Pm(</»A:(</»-P:(</»Am(</»]

+ [Rm(</»B:(</» - R:(</»Bm(</> )]]t: d</> (13)
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where K: is a suitably chosen constant. The reciprocal theorem relates Wd to bounded
integrals evaluated along the remaining portion of the boundary Lb. Therefore, if Wd is to
have a meaningful interpretation, A: must be chosen so that

lim wd.-0
is bounded for all m and n. In addition,

lim" K r eAm+A~LJ m mn
£-0 m

must be nonzero for at least one m. If the exponent A: is chosen so that

the above requirements are satisfied. Furthermore, since An is a solution of equation (11),
A: or - An is also a solution. Consequently, each auxiliary solution satisfies the traction
free boundary conditions and ~(e) is identically zero. Although this argument is presented
with reference to the traction-free crack the resulting conclusion can be generalized in
terms of the following proposition:

Proposition 1. If each component of the actual solution satisfies a set of homogeneous
boundary conditions, then there exists a corresponding auxiliary solution with A: = - An
satisfying the boundary conditions.

There is one more remarkable property associated with the auxiliary solutions which
also applies in the general case.

Proposition 2. The nth auxiliary solution picks out only the corresponding nth genera
lized displacement.

The proofs of these propositions are developed in the Appendix.
The general form of the integral equations at irregular boundary points must be deve

loped by considering a general situation, not a free crack. For the wedge, complex eigen
values occur in general, sometimes even for the most singular solutions, as in the fixed-free
case where the wedge opening angle is 1t. In the simpler case where the eigenvalues are real,
there is one solution associated with each eigenvalue [see equation (6)]. When the eigen
values are complex there are two independent solutions for each complex conjugate pair
of eigenvalues. These independent solutions are constructed from the real and imaginary
parts of equation (6). The corresponding auxiliary solutions are obtained from equation (9)
in a similar fashion. For any given region, Fig. 2, the boundary tractions and displacements
associated with the actual and auxiliary solutions will now be denoted by

tJ{Q); actual tractions

uiQ); actual displacements

t~(Q); auxiliary tractions

u0{Q); auxiliary displacements

where j (j = 1,2) indicates the (x, y) coordinate directions and i (i = 1,2) refers to the two
independent real auxiliary solutions which are derived from the corresponding nth complex
solutions [10].
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• Ordinary Boundary Paints

o Transition Paints

23

'I ( 5 ) ~ 30 k 51

\- ~r__Xl

13

14
15

FIG. 2. Notched circular plate subjected to prescribed tractions.

Before the reciprocal theorem is applied to the actual and auxiliary solutions a small
circular sector D, which contains the irregular point is removed from D+L. The reciprocity
relations for D+L-D, are

- f. [ti Q,)u0(Q,) - to(Q,)ui Q,)] ds(Q,)
L c

= L-Lc [tiQ)u0{Q)-t0{Q)uiQ)] ds(Q).

(14)

Equations (14) can be recast by noting that for a sufficiently small 8 the actual solution can
be expressed in terms of an eigenfunction expansion. Further simplification results after
the integrand on the left side ofequation (14) is expressed in terms of the polar coordinates
(8,4». It can then be seen that the work done over the arc L, does not depend on 8. Therefore,
letting 8 approach zero in equation (14) gives

(15)

where the K~l) are the two independent generalized displacements associated with the real
and imaginary parts of the nth actual displacement field. The r~l serve as generalized
forces.
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SPECIAL CONSIDERAnONS

Rigid body displacements at irregular boundary points

The integral equation formulation for the rigid body rotation at an irregular boundary
point follows directly from the formal development of the preceding section. Equations (9)
and (10) with An = - 1 provide the fundamental rotational auxiliary solution which,
according to Proposition 1, satisfies the homogeneous boundary conditions.

In the case of the rigid body translations, the integral equations are derived with the
aid of the Kelvin solutions and take on the same form as the integral equations (I) at
regular boundary points. The only difference is that the (Xij at irregular points need not be
zero for i unequal to j.

Crack problems

One can easily see that the Kelvin auxiliary solutions lead to an indeterminate integral
equation formulation at points along a crack by noting that these solutions pick out only
two independent combinations of the four displacements (two on each side of the crack):

(Xij[uiPI) +u/P2 )J + {tij(Q)u/Q) ds(Q)

= {tiQ)U0{Q) ds(Q) (16)

where (Xij = 0 for i #- j and where the coincident but physically distinct points PI and P2

are associated with opposite sides of the crack. Since equations (16) contain the sum of
the displacements at PI and P2 , we seek auxiliary solutions that pick out the difference ofthe
displacements at PI and P2 • Such solutions are readily available [3J and correspond to
equal and opposite prying forces acting at some point along a semi-infinite crack in an
infinite body. Using these solutions as auxiliaries, we find

(17)

with

where f3ij = 0 for i #- j. The curve LE is a circle that excludes PI and P2 from the body.
Although the auxiliary solutions are also singular at the crack tip Pc, the work integrals
along a circle L. which encompasses Pc are 0(1;1/2) and therefore vanish as I; approaches
zero.

Up to this point, only the equations at regular boundary points along a crack have
been considered. Asimilar situation arises at the intersection ofthe crack with the remaining
portion of the boundary. In this case the irregular boundary points at the intersection
coincide and, therefore, two additional equations for the translational displacements are
needed. Moreover, it is also necessary to introduce an additional equation for the rotations
when the intersecting boundaries form two right-angle corners. The equations for the
translations can be established using the auxiliary solutions associated with regular points
along a crack. However, it is more convenient from a computational standpoint to use
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auxiliary solutions that correspond to prying forces acting at the midpoint of a finite
crack in an infinite body.

The character ofthe rotational auxiliary solution is identical to that of the fundamental
rotational auxiliary, i.e. An = -1. However, this solution, unlike the fundamental rota
tional auxiliary, does not satisfy the local homogeneous boundary conditions [12]. In
the crack problem considered in this paper (see Fig. 7), the additional auxiliary is chosen
so that the crack remains traction free. In this case, tractions of the order of p - 2 exist along
the boundary perpendicular to the crack.

It can be shown that the work integrals with the new kernels are bounded. Exact
expressions for these integrals when the interval of integration contains the touching
corners are developed in [12].

Non-zero boundary tractions at irregular boundary points

It will be recalled that when the boundary conditions near an irregular point are of the
homogeneous type the local displacements can be expressed in terms of an eigenfunction
expansion where each of the eigenfunctions conforms to the homogeneous boundary
requirements [see equation (8)]. When tractions are applied at an irregular point the actual
displacements can be represented by the eigenfunction expansion plus a certain "particular"
displacement field which satisfies the nonhomogeneous boundary conditions. For suffi
ciently smooth loadings, the particular displacements in the vicinity R(p) of an irregular
boundary point can be expressed as

U(r = I CnA~p)(cf»pA.n

(18)

n

where the An are now positive integers. In most practical applications, the boundary
tractions vary in some simple fashion in the immediate vicinity of an irregular boundary
point, thereby making it possible to obtain the An and Cn by inspection. In more complicated
situations where the tractions near the irregular point happen to be nonanalytic, a An
representing the non-analytic character of the boundary tractions is chosen. Then the
An's associated with the remaining analytic portion of the boundary tractions take on
integer values. After the An have been established the Cn can be obtained by an appropriate
numerical approximation.

Once the expansion for the particular solution is known, it is a relatively simple matter
to include the effects of tractions at irregular points in the formation of the integral equa
tions. The same procedures used in developing equation (15) are used, the only modifica
tions are that the reciprocal work terms contain the particular displacements and tractions
enter into the integral equations as known free terms.

NUMERICAL TREATMENT OF BOUNDARY VALUE PROBLEMS

Approximate representation of the integral equations

In most cases exact solutions to the integral equations under consideration are not
available. Therefore, one seeks approximate solutions to these equations at discrete
boundary points. As an example, consider a region D+ L where the boundary points are
indicated as shown in Fig. 2.
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The appropriate eigenfunction expansions, [11] are used in expressing the boundary
values along the intervals extending from the irregular points, up to the so-called transition
points (Fig. 2). The boundary values over the remaining intervals are obtained from a
parabolic interpolation of the boundary values at the regular boundary points. Since the
boundary values at the transition point are expressed entirely in terms of the generalized
displacements, the integral equations are written only at the regular and irregular boundary
points referred to as ordinary boundary points (see Fig. 2). If the integrals appearing in
these equations are approximated by weighted sums, then the set of integral equations
can be reduced to a system of linear algebraic equations that involve the generalized
displacements and discretized boundary values as unknowns.

Standard quadrature techniques (e.g. trapezoidal rule, Simpson's rule) can be used to
approximate the integrals when the integrands are regular. Further refinements can be
achieved by subdividing the boundary intervals [12, 13]. In cases where the interval of
integration includes a singular point of the kernel the integral is expanded in a series which
contains the dominant or singular term. Each term of the series is then integrated exactly.
Only a few terms need be retained in most practical computations.

It is important to recognize that local curvature ofthe boundary can have an important
effect on the accuracy of the computation. In order to take this effect into account the
boundary curvature along the interval of integration is approximated and enters into the
computation [12, 13].

A detailed development of the numerical schemes used in the application of the integral
equation method is presented in [12].

The method presented in this paper was used to obtain solutions for the sample problems
described in the next section. In these problems it was assumed that the eigenfunction
expansions are accurate representations of the actual solution along the intervals that
contain the irregular boundary points. The numerical results appear to justify this as
sumption.

Some numerical results

Numerical solutions for two plane strain problems were obtained in order to test the
theory. In each case, the modulus of elasticity was taken as 30 x 106 psi and Poisson's
ratio as 0·25. These problems were selected with the aim of investigating both the accuracy
and stability of the solutions as affected by:

1. the number and distribution of boundary points; and
2. the number of "modes" in the eigenfunction expansion at irregular boundary points

(i.e. the number of generalized displacements to be determined).
One set of solutions was obtained for a notched circular plate (problem 1) subjected

to the tractions shown in Fig. 2. The remaining problems set deals with the determination
of stresses in a cracked plate. In problem 2, the tractions applied along the boundary are
computed from the solution of the Griffith crack problem with the stresses at infinity
taken as ax = a y = 30 ksi and 'rxy = 0 (see Fig. 6). The obvious advantage in selecting
such a loading is that the numerical results can be compared with the exact solution
obtained from the Griffith field.

An exact solution for Problem 1 is not available. However, it is still possible to test
whether this solution is consistent by first computing the stresses at specified points near
the notch in terms of the eigenfunction expansions for the displacements. Then these
stresses can be compared to stresses which are obtained by differentiating the integral
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(19)

equations for the displacements. In the latter case, the method of determining the stresses
begins with the formation ofthe integral equations (1) for the displacements at the specified
points. Then, the integral equations for the strains are obtained by differentiating the
kernels underneath the integral sign. That is,

a~(p) = {J.iJ 1 [ ( tiQ) aU}j(Q) ds(Q)- ( at~j(Q) uiQ) dS(Q)]
UX k JL UX k JL UX k

where k = 1,2. The values of {J.ij' of course, depend on whether P is a boundary or interior
point. The stresses are easily obtained from the strains in equations (19).

The results presented in the following sections include the displacements at certain
boundary points and the stresses at several interior points. Some of the generalized dis
placements are also tabulated. The units in which the generalized displacements are
measured can be deduced from expressions for the displacements [e.g. equations (6)].

(a) Re-entrant corner problem (problem 1). Solutions for Problem 1 were obtained
for a variety of boundary point spacings, some of which are indicated in Figs. 2-4. Displace
ments and generalized displacements at the 22 ordinaryt boundary points in Fig. 2 were

• Ord inary Boundary Points

o TranSItion Points

23

FIG. 3. Boundary points for a notched circular plate.

• Ordinary Boundary POints

o Transition Points

x

21

FIG. 4. Boundary points for a notched circular plate.

t At points such as 2 and 28 no equations are written. The field values of these points are determined entirely
from quantities defined at the irregular point between them.
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obtained using 57 equations. The relative changes in these displacements that result
from the choices in the distribution of boundary points indicated in Figs. 3 and 4 are
less than 0·5 per cent. As shown in Figs. 3 and 4, the two solutions correspond to 22 and 18
ordinary boundary points, respectively. When 34 ordinary boundary points were used,
the relative improvement in the results was approximately 1·5 per cent. This suggests that
sufficiently accurate results can be obtained with a fairly small number of equations.

Initially, eleven modes were used in the eigenfunction expansion at the re-entrant
corner. The last four terms contribute only a small fraction to the total displacement in
the intervals adjacent to the re-entrant corner. The changes in the solution which are
observed when the last four modes are omitted are less than 0·1 per cent.

Two different methods were used to compute the stresses (Jp, (J</>, 'p</> at the interior
points shown in Fig. 5. Those stresses found by use of the eigenfunction expansions are

FIG. 5. Location of interior points at which stresses are evaluated.

denoted by (J~1), (J~I), ,~~; the stresses obtained from the integral expressions, equations (19),
are denoted by (J~2l, (J<;), ,~:r Stress computations were carried out for the boundary point
configurations of Figs. 2 and 3, with eleven modes included in the eigenfunction expansion
at the re-entrant corner. Approximately 98 per cent of the maximum stresses (J~1), (J~1), ,~~

at the points PI and P4 and 80 per cent at P3 and P6 arise from the first nonrigid body mode.
This trend is not surprising since this is the only singular symmetric mode in the expansion
for the stresses.

It is more significant, however, that the two different methods for computing the stresses
give essentially the same results even at the more distant points, P3 and P6 where the
contribution of the higher modes is not at all negligible (see Table 1).

(b) The Griffith crack problem (Problem 2). The tractions at a number of boundary
points (Fig. 7) were computed from the exact Griffith solution [14]. Approximate dis
placements at these points were then obtained using the proposed method. The absolute
error in these displacements is less than 0·5 per cent. In this case, eight modes with the
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TABLE I. STRESSES NEAR THE RE-ENTRANT CORNER: PROBLEM I

Interior P2t c/J~I) a(2) a(1) a(2) ,(1) ,(2)
p ¢ ¢ p¢ p¢

point (in.) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi)

1 23·21 23·07 41·77 41·70 0·0 0·02PI I 23·23 23·22 41·79 41·79 0·0 0·0

1 13·69 13·60 32-10 32·10 0·0 0·02P2 1 13-70 13·69 32·13 32·14 0·0 0·0

I 8·96 8·91 28·25 28·26 0·0 0·0"2
P3 I 8·97 8·96 28·26 28·29 0·0 0·0

I 41·18 40·99 13·67 13-59 18·24 18·30"2
P4 I 41·20 41·20 13·68 13-66 18·25 18·26

I 31·43 31·33 6·43 6·53 13·90 13-86"2
Ps I 31-45 31-43 6·43 6·45 13-91 13-92

1 27·48 27·47 2·94 3·02 12·17 12·102
Po 1 27-49 27-48 2·94 2·99 12·17 12·18

t The length of the intervals adjacent to the irregular point (see Fig. 5).

eigenvalues (A = 0·0,0·0,1·0,0·5,1·0,1·5,2·0, 2·5)t were used together with the eigen-
function expansions, equations (5), to compute the stresses near the crack tip. It can be
seen from Table 2 that the approximate and exact stresses at the interior points in Fig. 7

----

12in.

t
6ill.

n. L
I 6in. 6in. I

FIG. 6. Data for Problem 2.

t The first three eigenvalues correspond to the rigid-body modes.
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FIG. 7. Boundary and other points for a cracked plate.

agree remarkably well in view of the fact that only 80 algebraic equations at 34 ordinary
boundary points were used in obtaining the solution. It is possible to arrive at an accurate
estimate of the stresses at sufficiently small distances from the crack tip in terms of just the
fourth generalized displacement, which in this case is proportional to the stress intensity
factor. The error in the intensity factor was approximately 0·02 per cent.

The stresses at the external corners are computed in terms of the appropriate particular
solutions, i.e. equations (18). It should be recalled that these solutions are determined
directly from the prescribed boundary tractions near the corners.

TABLE 2. STRESSES NEAR THE TIP OF A CRACK: PROBLEM 2

Exact stresses (ksi) Approximate stresses (ksi)
Interior

point up u</> 'p</> up u</> 'P4>

PI 78·00 78·00 0·0 77-99 77-99 0·0
P2 50·00 50·00 0·0 49·97 49·97 0·0
P3 45·36 45·36 0·0 45·29 45·30 0·0
P4 79·54 30·99 27·52 79·53 31·00 27·50
Ps 47·71 24·07 17·32 47·66 24·18 17·37
P6 42·09 23·65 15·46 41·99 23·86 15·55
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In this problem, it turns out that the crack boundaries are unstrained. It is therefore
encouraging that the two generalized displacements which produce stretching along the
crack boundaries are negligible when compared to the generalized displacements associated
with the opening modes.

The results are stable with respect to changes in the number and distribution of boundary
points. For example, errors ofless than 2 per cent were observed when 14 ofthe 34 boundary
points in Fig. 7 were removed.

In addition, the results obtained using 34 boundary points remained stable when the
number of modes at the crack tip was varied. Errors in the displacements at the ordinary
points of approximately 1·0 per cent occurred when the last four modes were omitted from
the eigenfunction expansions.

The choice of the length of the intervals adjacent to the crack tip had only a minor
effect on the boundary displacements. When eight modes were included at the crack tip
and the adjacent intervals in Fig. 7 were doubled to 2 in., errors in the displacements at
the boundary points of less than 0-5 per cent were noted.

CONCLUSIONS

The main conclusion that can be drawn from this study is thai the extended integral
equation method can be applied successfully to a wide range of technically relevant pro
blems. The method is both conceptually simple and numerically effective.

It is clear from the numerical results that the integral equation approach provides
accurate solutions that are relatively insensitive to changes in the number and location of
boundary points or to the number of eigenfunctions included in the expansion at irregular
boundary points. Moreover, these solutions were obtained using a small number of simul
taneous equations.

The success of the proposed method is due at least in part to the fact that it leads to a
system of linear algebraic equations with large diagonal coefficients, which is one indica
tion of good conditioning. Certain numerical refinements such as subdividing the boundary
intervals and including the effect of boundary curvature in the singular integrals also
played a particularly important part in achieving accurate results.

An important consideration contributing to the stability of the method is that the
generalized displacements cannot couple directly with each other. Rather, they couple
with the far-field displacements. This is perhaps the most important reason why the
generalized displacements associated with the lower modes were not significantly affected by
the addition of the higher modes.

The fact that the generalized displacements depend only on the far-field displacements
suggests a simple alternative procedure for estimating the stresses near an irregular boun
dary point. A finite element analysis which neglects the effect of the nonanalytic perturba
tions on far-field displacements can be used to determine the far-field displacements.
The generalized displacements can then be determined directly from equations (15).
This approach will not be as accurate as the proposed method but it can be easily incor
porated into existing finite element programs.
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APPENDIX

Proofs of Propositions I and 2

Since the mth actual and nth auxiliary solutions appear frequently in the subsequent
proofs of propositions 1 and 2 it is convenient to refer to them as:

Solution 1. The mth component of the actual field defined by equations (4H8).
Solution 2. The nth auxiliary field defined by equations (9) and (to).

Proof of Proposition I

Consider the solutions 1and 2 with n = m and let both solutions be defined in the same
annular sector (see Fig. 8). Solution 1 satisfies a set of homogeneous boundary conditions.
This fact can be easily confirmed by recalling that Am is obtained by expressing the appro
priate boundary quantities in terms of Solution 1. This leads to the four linear algebraic
equations

(A.I)

The determinant of this system of equations must be equal to zero in order to insure that a
nontrivial solution exists for the homogeneous boundary conditions

The resulting characteristic equation is then used to determine the admissible values of Am'
The corresponding boundary values associated with Solution 2 are obtained by replacing
Am by - Am in equation (A. I) giving

(A.2)
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o

FIG. 8. Annular sector.

If the determinant D* of this new system vanishes then Solution 2 satisfies the homo
geneous boundary conditions and Proposition 1 is proved. Suppose, however, that D*
does not vanish. Then it is always possible to solve for a unique and nontrivial set of
[Cjmkl and still satisfy any three of the homogeneous boundary conditions. Now the
reciprocal relations are applied using solution 1 and 2 along the boundaries of the annular
sector shown in Fig. 8. It is easily seen that the reciprocal work terms along the circular
arcs sum to zero. This is apparent from Fig. 8, by noting that the positive directions of
tractions are opposite along the two arcs while the positive directions of displacements
remain unchanged and that the variation of the stresses and displacements in ¢ is the
same along both arcs. Therefore, the reciprocal relations are expressed as

(A.3)

where

nd</J) = Tq,mD;m+ T;,q,mD;m' n21(¢) = T;mDq,m+ T;q,mDq,m'

Since Solution 2 satisfies three of the four homogeneous boundary conditions, all but one
of the eight work terms in the reciprocal relation must vanish. But then the remaining
term associated with the violated boundary condition must also vanish if equation (A.3)
is to be satisfied. The significance of this requirement can be illustrated by considering an
example where

Tpq,m(O) = ~q,m(fJO) = Tq,m(O) = Tq,m«(Jo) = O.

If, in determining Solution 2, T:m(O) is chosen as the nonzero element ofthe [b~k1 vector,
then the reciprocal relation is given as



Detennination of elastic stresses at notches and corners by integral equations 1337

Since T:m(O) is nonzero it follows that D,pm(O) must be zero. Now the choice of the nonzero
element of the [bi':..kl vector is completely arbitrary and therefore this analysis can be
performed separately for the two independent [bi':..kl vectors which violate the two
homogeneous boundary conditions on one edge of the annular sector. Clearly, then the
assumption that D* does not vanish necessarily implies that all the nonhomogeneous
boundary values of the actual solution vanish along one edge. But if all the tractions and
displacements on one edge disappear then the existence and uniqueness theorems for
ordinary differential equations [15] applied to equations (3) require that the actual solution
vanish everywhere. This, however, is an obvious contradiction, since the actual solution is
known to be nontrivial. Hence, D* must be zero. The extension ofthis proof to cases other
than traction-free wedges is apparent.

Proof of Proposition 2

Consider Solutions 1 and 2 and let them be defined in the same annular sector for any
m and n (see Figs. 8 and 9). The reciprocal theorem can be used to relate the two systems

FIG. 9. Systems for developing auxiliary solutions.

of tractions and displacements associated with these two solutions. According to
Proposition 1 both of these solutions satisfy the homogeneous boundary conditions.

Consequently, the reciprocal work terms along both radial edges of the annular sector
vanish. The remaining reciprocal work terms are related as follows

(A.4)
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where
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\fI I Z(p, (I» = TpmD;n + Tp</>mD:n

\fIZI(P, ¢) = T;nDpm + T;</>nD</>m'

Using equations (6), (7), (9) and (10), and letting A: = - An it is possible to recast the re
ciprocal relation as follows

(A.5)

where rmn is given by equation (13). When m is unequal to n the exponent Am - An is not
equal to zero, and since PI and PZ are arbitrary the reciprocal work equation can be satisfied
only if rmn is identically equal to zero. If m equals n, equation (A.5) reduces to an identity
which reveals no information on the nature of r nn •

In the proofs of Propositions 1 and 2 it was assumed that the An were real. However,
the proofs remain essentially the same for complex An; the only significant difference is
that in this case the reciprocal theorem is applied to complex displacement and stress
fields. The generalized force, r nn , is derived for complex Am in [12].
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AOCTpaKT-)l.aeTcli MeTO,ll IIHTerpaJlbHOrO ypaBHeHIISI, KOTopblll rr01BOJlSleT Onpe,llJlIITb rrOJlSl HarrpSllKeHHil

II ,lIe<llopMal..\HH B6JlH3H yrJlOB H Bblpel0B. Cnoc06 pac'IeTa IICrrOJlb3yeT XopOWO H3BeCTHbie BblpalKeHHlI

aCHMIITOTH'IeCKOrO xapaKTepa, ,lIJlSI rroJleil B6JlH3H HCKaTeJlbHblX TO'leK. I1cCJle,llYIOTcli HeH3BecTHble

K03c1JclJHI..\HeHTbl, O,llHH H3 KOTOpblX lIBJllIeTCli clJaKTopoM HHTeHCHBHOCTH HarrplilKeHHil: ,lIJllI cJlY'lali IIJlaCTHHKH

co II..\eJlblO, B CMblCJle 060meHHblx rrepeMemeHllil. Pa3pa60TaHbl nO,llXO,llllWHe OIlblTHbie peweHHlI, C

l..\eJlblO rrpe,llCTaBJleHlIlI 0606meHHblx rrepeMemeHllil B clJopMe HHTerpaJlOB, 3aKJlIO'IalOmHX BeJlH'IHHbl

,lIaJleKIIX rroJleil. )l.alOTcSI '1I1CJleHHble peweHIISI. nOJlY'leHHble 111 06palUOB. ,lIJlSI nJlaCTIIHOK C Ha,llpel0M II

co meJlblO.


